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Langevin dynamics of a polymer with internal distance constraints
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We present a rigorous approach to the Langevin dynamics of ideal polymer chains subject to internal
distance constraints. The permanent constraints are modeled by harmonic potentials in the limit when the
strength of the potential approaches infinibard cross-links The cross-links are assumed to exist between
arbitrary pairs of monomers. Formally exact expressions for the resolvent and spectral density matrix of the
system are derived. To illustrate the method we study the diffusional behavior of monomers in the vicinity of
a single cross-link within the framework of the Rouse model. The same problem has been studied previously
by Warner{J. Phys. Cl4, 4985(1981)] on the basis of Lagrangian multipliers. Here we derive the full, hence
exact, solution to the probleriS1063-651X97)09702-X]

PACS numbdrs): 36.20-r, 61.41+e, 64.60.Cn, 87.15.By

[. INTRODUCTION found to be self-averaging and could be determined by rela-
tively simple numerical means. The essential trick was to
A theoretical treatment of the dynamics of polymer net-account for the cross-links in a general connectivity matrix
works is a generally unsolved problem. In a preliminary at-that includes both the connectedness of the polymer chain
tempt Edwardst al. [1,2] studied the problem of a polymer and an additional contribution from the cross-linking. In
subject to internal distance constraints. In their investigatiorflose analogy we expect the corresponding dynamic problem
the underlying theoretical problem was to handle theto have a similar exact solution as long as complicating fac-
quenched degrees of freedafinard cross-link constraints tors such as excluded volume, hydrodynamic forces, or en-
which, for example, in a random network exist between pair§anglements are neglected. To demonstrate this analogy we
of arbitrary polymer segment&éhe monomers As a first ~ start from the standard Langevin description for the polymer
step Edwards considered(macroscopically long polymer ~seégments and solve the stochastic differential equation in
chain which was internally cross-linked to itself at random.terms of its resolvent. As an instructive example we recon-
The polymer backbone was assumed to be Gaussian and thigler the figure-eight-shaped polymer problére., a poly-
resulting dynamics was found to be of the standard Rouseiafer ring with one cross-linkstudied by Warnef5] and
type [3,4]. Permanent junction points were treated by La-present its full solution. We first confirm the results from
grangian multipliers, which led to enormous technical diffi- Warner, which have been derived only for low frequencies
culties for the corresponding differential equations. In factand low Rouse mode index, but show secondly the exact
these could only be handled by strong approximations, sucholution in the entire frequency and mode domain. More-
as preaveraging in combination with harmonic variations OVer, the technique introduced here opens new ways to study
Even when the problem was highly oversimplified and onlyLangevin dynamics of constrained systems.
one cross-link was considered the method of Lagrangian The paper is organized as follows. In Sec. Il the physical
multipliers still becomes highly involved, as was pointed outmodel, a generalized version of the Rouse model with inter-
in a successive paper by Warréi. nal distance constraints, is introduced. Section Il summa-
The purpose of the present paper is to develop an alternéizes some of the basic theorems regarding Langevin dynam-
tive formalism for treating Langevin dynamics of po|ymers ics to be used later on. In Sec. IV, the main calculational
subject to internal distance constraints. For calculational simbody of the paper, the general mathematical formalism for
plicity the simplest working model for a free polymer, the handling internal distance constraints is developed in detail.
Rouse mode[3,4], is considered. It is suggested that the Our treatment is a generalization of a method previously de-
more complicated problem of a random network can also b¥€loped for computing statistical properties of randomly
treatedexactlyby the presented method. We adopt here thecross-linked Gaussian structures, i.e., ideal polymer net-
minimal model suggested by Edwards2] and consider one Works[6,7]. In Sec. V an application of the method to dif-
(macroscopically huge polymer chain which is randomly fusional motion of a single cross-link is givethe Warner
cross-linked to itself. Such a cross-linking process will leadproblem. Section VI contains a short discussion of main
to tetrafunctional cross-links. In previous works we have al-esults and outlook.
ready demonstrated that the analogous static problem can be
solved exactly when excluded volume effects between the
polymer segments are ignorgl 7]. Physical quantities such
as the static structure factor or the radius of gyration were

II. ROUSE MODEL WITH INTERNAL
DISTANCE CONSTRAINTS

As a minimal model for the dynamics of a Gaussian chain
subject to internal distance constraints we consider a gener-
* Author to whom correspondence should be sent. alized version of the classical Rouse mofi#]l Its discrete
Electronic address: vilgis@mpip-mainz.mpg.de version is a bead-spring model, where the motion of the
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FIG. 1. Examples of different cross-linking
, topologies.(a) The polymer shape discussed in
Sec. V.a is the persistence length of the polymer
backbone. The hard cross-link constraint is en-
forced by e—0. (b) A ladder-shaped polymer
with £#0. (c) Two-dimensional membranéd)
Random network.

beads(monomersis governed by the coupled set of Lange- e —0 it has been showf6] that the Hamiltonian(3) is suit-

vin equations able to model har@ constraintgthe classical cross-link®f
the form
RO _ — Ve Ho({Ri}) +Fi(t) (1)
f dt - R;/t0 i i . M
In this equation of motion the inertial term is omitted as eﬂl (R (1) =Ry (1)). ®)

usual.{ denotes the inverse mobility or friction constant, and
R;(t) (i=0,... N) are the trajectories of the monomers in
three-dimensional space. The stochastic fole¢s) are as-

sumed to bed correlated with first and second moments

The cases—x leads to the well-known problem of a free
chain, which serves here as a reference state. One might be
worried that the above model is ill defined and might diverge

given by[4] in the limit e—0. It will be shown in Sec. IV that the con-
(F&(1))=0, (2) verse is true and that a surprisingly simple solution can be
obtained for this special limit. As shown in the earlier paper

<Fi"(t)Ff3(t’)>=2§kBT5H5aﬁb‘(t—t’). on the static propertiel$6], it is important to take the limit

£—0 at the very end of the calculation. This procedure en-
Superscriptsa, 8=X,y,z represent the three-dimensional sures firstly that no mathematical problems occur and sec-
Cartesian coordinates. In the classical Rouse model excludexhdly that in this case hard cross-link constraints is treated
volume interaction and hydrodynamic forces are disregardefroperly. Before going into more of the calculational details
and only elastic forces between monomers are retained in trme of the basic definitions and notations regarding Lange-
Hamiltonian. Here we consider a more general form of thevin dynamics are summarized in the next section.
Rouse model with an extra potential to allow for modeling

the internal distance constraints
I1l. LANGEVIN DYNAMICS OF IDEAL POLYMERS:

N PRELIMINARIES

3 , 3 < ,
’BHO_ﬁZ‘l(Ri Ri-1) +E;=“1(Rie Ri)% Consider the generalized Ornstein-Uhlenbeck process
specified by Eqs(1)—(3). For calculational simplicity matrix
The first term in the Hamiltonian represents the connectivitynotation will be used. We defineN(+ 1)-dimensional *“‘su-
of a Gaussian chain with persistence lengthwhereas the pervectors” with three-dimensional vector components to
second term models the cross-links. In particular we are comaccount for the positions of all monomerR(t)

cerned with permanent constraints when a monomer, say (Rq(t), ... ,Ry(t))" and for the stochastic forces acting
i1, is linked to another monomer labeled py. For more  upon themF(t) = (Fy(t), ... ,Fn(t))'. The dagger denotes
than one cross-link a whole s€ of cross-link “coordi-  the complex conjugate of the transposed vector. Further-
nates” is needed to specify all junctions in the system more, the N+ 1)-dimensional connectivityKirchhoff) ma-

o L L trix is introduced as
C=(|1,J1),..-,(|e,]e),...,(|M,JM). (4)

For example, depending d@ the object under investigation 1M
can be a flexible ring polymer, a two-dimensional mem- M(2)=wy WNP;Z Mieje) | (6)
brane, or a rubber networlFig. 1). -t
Although the theory will be developed for arbitrary cou-
pling constants two scenarios are of special relevance. Forwhere
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b0 o F(w) F dte 1R (t) (14)
w)= e
-1 2 -1 : -
We=( O &= 0 (7) is the Fourier transform of the stochastic forces.Bl; we
: -1 2 -1 mean the usual three-dimensional scalar vector product,
0o ... 0 -1 1 whereasF' is used for outer vector products. Fourier trans-

forms are denoted by a tilde.
is the Wiener matrix associated with the polymer “back- A formal solution to Eq.(10) can be obtained by Rice’s

bone,” and method[8]. The spectral density matrix for the stochastic
variableR(t) can be derived by use of E¢L3) and Fourier
AXie.je) transformation of Eq(10),
o 0o -0 -+ 0 O (R(w)RY(0"))=127D8(0— 0’ )R(w)R1(»'), (15
(.) ' 0 : O with the diffusion coefficienD given by
1 : -1 —iqth row
e —
1o o 0 0 o D=kgT/¢. (16)
0 -1 1 0 —jth row Of primary interest for the diffusional behavior is the two-
. . 0 . . © time correlation function matrix defined as
00 -~ 0 - 0 O ctt)=([RM-RAHIRMO-RANIT). (17

) Finally, a steady-state solution fal(t,t’) in terms of the
resolvent(12) is easily derived from the expression for the
models a single cross-link. For further use we note that #Pectral density matrix in Eq15),
characteristic time scale is given by the inverse of the “fre-

1k} 2 0
quency C(t—t’)=¥j dw[1—cosw(t—t")JR(w)R(w)".
0
3kgT (18)

-7 9
a’¢ In the following study our primary goal will be to find a
The dimensionless parameter (¢/a)2 in Eq. (6) is used to ~ general approach to calculate the resolvRiit), Eq. (12),

enforce the cross-linking constraints. With the above definifor an arbitrary set of cross-linking constrair@s Eq. (4).

tions the system of stochastic differential equatiéhscast From there Green’s function and correlation functions can in
into matrix form reads principle be obtained by use of the standard formulas pre-

sented in this section. AlthougM(z) is a matrix which
dR(t) 1 highly depends on all the details @ (the cross-link posi-
dt +tM(R(1)= ZF(U- (10 tions), substantial progress can be made by invoking the fol-
lowing exact method.
Some of the physical quantities of interest and their interre-
lations are listed below. More details can be found, for ex- IV. CALCULATION OF THE RESOLVENT R(w)
ample, in Ref[8]. The Green'’s function to Eq10) is given

wo=

The first step in deriving a general expression Rfw)

b
y for hard cross-links is to find a way to perform the limit
G(t)=lime M@t (11 z—0 in Eq. (12). This is an interesting problem in its own
20 right which so far could only been handled by introducing a

finite cutoff atz=1 and successive crude variational esti-
Forz—0 the case of hard constraints is recovered. Other- mates. Here we present an analytically exact approach that
wise z is an additional distance parameter in the model. Ofcan overcome these difficulties. The mathematical trick is to
great importance in the following derivation is the Laplaceytilize an additional symmetry of the cross-link term in Eq.

transform(resolvent of the matrix M (8) by writing the complete cross-link contribution in E@)
. in the form of a dyadidouter vectoy product
R(w)Ef dte '“'Gt)=lim[ioZ+ M(2)]" !, (12 M
0 . o
o 2 Miejo =" (19

whereZ denotes the identity matrix.
From Eq.(2) the spectral matrix of the Langevin forces where
F(t) is found to be
o UC)=(uyq, ... ,uy) (20
(F(o)F'(0"))=121kgT{8(w— ') T, (13
has been introduced as thdl{1)XM rectangular matrix
where with each of itsM column vectors given by
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—-g  (e=1,...M). (22) formally exact solutions to the problem posed in E@s-

€ (4). The further evaluation dR(w) for specific realizations
Hereg_represents theN+ 1)-dimensional unit vector with pf cross-linksC can be split into two parts and is discussed
1 in theith position, and 0 otherwise. ThiagC) has only in subsequent sections.
2M elements not equal to zero that contain complete infor-
mation about all cross-link positions. In the above notation B. Resolvent ofWW,
each cross-link is uniquely represented by a veatorNote Evaluation of the inverse a# in Eq.(25) can in principle

that all vectors,, e=1,... M are linearly independent for e gone by full diagonalization a#,, which is tridiagonal.
tetrafunctional cross-links. Combining Eq&), (12), and  kor calculational simplicity we consider here only the cyclic

Ue=€

e

(19), the resolvent cast in matrix form reads counterpart oV, with periodic boundary conditions
1 ® 1 -1 _ o
R(w)=— lim|i —T+Wo+ 22| . (22 2 1.0 1
@0 7.0\ @o Z -1 2 -1 --. 0
It is convenient to decompose E@2) into a singular and a Wo={ + (26)
nonsingular part, with the nonsingular part being o -~ -1 2 -1
w -1 o -1 2
Wi —T+W,. 23)
o

Both modelg7) and(26) are known to obey the same Rouse
dynamics in the limitN—oo [11]. Physically the latter situ-
ation represents a flexible ring polymer. The eigensystem to
Eq. (26) is of particular simple form since it is a circulant.
The eigenvalues read

It is well known in the mathematical literature that if the
inverse ofWW exists, then the inverse in ER2) is given by

1 -1
W+ Euu*) =W I-UzZ+UW )~ U w1].
k
(29) — 4sir? T _
Ak 4S|rFN+1, k=0,...N. (27
This theorem can be directly verified by matrix multiplica-
tion. The latter identity is also known as the Sherman-The modal matrix of Eq(26) is the Fourier matrixF [14]

Morrison formula[9]. with matrix elements
A. The limit z—0 1 24kl
There are two subtle points about the existence of the [F1a= /N+1exl N+1° kI=0,... N (28

right hand side of Eq(24). First, we require/V" ! to exist.
The only critical case arises =0, i.e., when/W=Wj in
Eq. (23). The problem here is thay), is only positive
semidefiniteand there is one mode with eigenvalue 0 from

Spectral decomposition leads to the well-known representa-
tion of the inverse/V 1 in terms of its eigenvalues

translational invariance. This can be directly seen from the 2min(k—1)
definition of W, in Eq. (7), which is a row(column constant N ex;{—
matrix. However, even in the semidefinite case the above N+1

>

-17 _
RUNT N+15=0 iw/wgt\,

. . ; . 29
theorem remains valid iV~ denotes a generalized inverse 29

of W as was proved in Refl10].

Secondly, from the definition af,, in Eq. (21) it is easily
verified that for tetrafunctional cross-links @& vectorsu,
are linearly independent. Thus in general the kernel The remaining calculational task for determiniRfw) is
zZ+U'W 4 will be a positivedefinite matrix of dimension the evaluation of the kernel function in the second part of Eq.
M andfull rank which has only positive eigenvalues for all (25),
non-negative values of. As a consequence performing the s et
z—0 limit in Eq. (24) leads to a well-defined expression for Klw;C)=UWU) = (30)
the resolvent

C. Discussion of kernel

Since K(w;C) depends on all the cross-link positions
C=(i1,j1), ---,(m,im) Vvia U no further analytical
progress is possible without specifying the cross-link in the
system. On the other hand, from the mathematical structure
The first term is the linear chaifRouse¢ model, whereas the of K(w;C) most problems of interest fall into one of the
second part arises entirely from the effect of cross-linkingfollowing three categories. Only one of these will be consid-
Although the case of general cross-linking potertid still  ered in detail in Sec. V.

implicit in the basic formula24), we will restrict ourselves (i) The number of cross-linksM is small. Since

in the following discussion to the somewhat simpler caselC(w;C) requires inversion of a XM matrix, analytical
z=0, i.e., hard§ constraints. Equation&4) and (25) are  progress is always possibleM is not too large. A particu-

1
R(w)= w—OW’l[I—L{(UTW’ W w1t (25



55 LANGEVIN DYNAMICS OF A POLYMER WITH ... 3041

larly simple problem is treated in the next section when we A suitable realization of the system in Figial would be
consider the dynamics of a polymer shaped like the figure of
eight[Fig. 1(a)]. UC)=Uu;=e—EN+1)2- (35

(i) Another special case arises whenis large, but there ) o
is some additional pattern in the structurelofExamples of ~ 1hat is, monomer 0 is linked to monomeN ¢ 1)/2. The
this kind are illustrated in Figs.() and 1c). In particular, ~M&in calculational task is to determine the kergizl f_uncuon,
the sketch in Fig. (b) shows an example of a macromolecule EQ- (30), of the system. From Eq35) and with)V™" given
with distance constraints#0, i.e., the more general case PY Ed. (29 we get immediately
governed by Eq(24). For the above example§ can be

-1
calculated as a consequence of the regularity of the cross- K(w)= 4 : ! ' (36)
link positions. We will report on these systems in a separate N+1 1“Gad i w/wo+ Ny
publication.

(iii) The third important category arises whihis large ~ Where the summation includes only the odd terms. For the

and the cross-link position§ in Eq. (4) are picked at ran- diffusional motion the quantity of interest is the self-
dom. This is the case of a polymer ¢€ig. 1(d)]. Here one  correlation function contained in the diagonal elements of
has to resort to numerical computation/ofw;C) [7]. How-  the correlation matrix18)

ever, there is still a huge calculational advantage with Eq. VI _ N2

(25). For a polymer network we have in genendl<N. [Ct=t)]ss=([Rs() = R(t") I, (37
Equation(25) requires “only” the inverse of aiM X M ma-

) - : wheres is the distance of theth monomer with respect to
trix, [7] and not of the completd X N connectivity matrix as

the cross-link at positios=0. Typical terms and manipula-

IS %ommolnly helieved Ihn thehpolymer Irteratt)Ll[rEZ,l?J. Id b tions in the straightforward derivation which is not carried
n analytic approach to the network problem would be t0 )+ in detail are of the form

perform the quenched average of the resolvent over the
cross-link position<C. The latter problem is a key problem 2misn
in current network research and has not been analytically ex

. 1 N+1
solved even for the static problem. i

Before calculatingR(w) for a specific example, we want N+ 1 riodd i@/wo+ X,

to establish some remarkable and general properties of the _
operators in Eq(25). Consider the cross-link part in Eq. 1j1 exp(2misx)

=20 i ol wg+ dsirt(mx)

(25), 2
V=W uw - utw L, (3 1 [wg i [ o
=_ —exp(———(1+i)|s| —) (39
4 w 4 200()

By elementary matrix multiplication it is found that

W=y, uv=uw?, yu=wu. (32)  In deriving the first integral we have performed thNe-
limit. The latter expression was obtained by setting
A matrix with these properties is said to be a generalizedin(mx)=mx. Only the final result for the self-correlation
projector toWW~ 1. Furthermore, function (37) is quoted here

WV)2=WY, (VW)2=VW 33 —t
oW oW 49 <[Rs(t)—Rs(t’)]2>=A(s,|t—t’|)2a2\/%- (39

are idempotents whose eigenvalues are known exactly:

A ;=1 andi,=0 with degeneraciel andN—M. By use of 1y time_dependent prefactor is given by
the above results it is easy to prove that the resolvent satisfies
a remarkable orthogonality relation

As[t—t/])=1— — fcd 1 oo (40)
s|t—t'|)=1- X

U'R(w)=R(w)U=0. (34) 2\2mlo X2

Equation(34) is valid for arbitrary cross-link positions and Xefs'&[cos(sf \/;)Jrsin(sf\/;)]

independent of the specific cross-link topology of the system
under investigation.

1 (= s'?2 7\ In(1+y?
V. DIFFUSIONAL MOTION OF A SINGLE CROSS-LINK mJo y

As the simplest possible application of the method develwhich scales with
oped in Sec. IV we consider the figure-eight-shaped polymer
depicted in Fig. 1a). What we have in mind is to model the . 252
dynamics of a single cross-link in an ideal dilute network S= wot—t']" (42)
when the distance between cross-links is Idrge It is ex-
pected that monomers in the neighborhood of the cross-linkhe complicated integral in E@41) is plotted in Fig. 2. The

are somewhat affected by the slower dynamics of the crossssymptotic behavior for small values &fis governed by the
link [1,5,19. expansion
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FIG. 2. PrefactoA(s'), Eq.(41). The dashed lines represent the
asymptotic behavior for small and large valuessbf

S,\/; S/Z

A(s’)=%+— — +0(s'?).

22 4

In particular for the diffusional motion of the cross-link (rjeosmultlfe?vlvs(;)rlfpphcable to the challenging problem of a ran
(s=0), we findA=1/2 which is exactly half the diffusion | {his investigation we restricted ourselves to the sim-
constant of an unconstrained monomer in the Rouse Mod@liest physical scenario, where only Rouseian dynamics was
[16]. The finding is in agreement with the result in RES] i, 6|ved. This case was deliberately chosen to highlight the
based on the method of Lagrangian multipliers. Beree  yyincina| mathematical difficulties. As a special application
(monomers that are sufficiently far from the crossJimke e studied the dynamics of the figure-eight-shaped polymer
recover th_e d|ffu5|c_)n Iaw_ of the classical Rouse mOdedepicted in Fig. (a). In contrast to an earlier attempt by
(A=1) which was first derived by de Gennb]. Warner[5] based on Lagrangian multipliers which yielded

In_ addition, we ob'Faln the crossover from the slower dy'only two limiting cases— 0 andes, the full solution could
namics of the cross-link to that of a “free” monomer in the he ‘erived by our method. Moreover, our result allows for
classical Rouse model asis va_rled from zero to infinity. computation of the dynamic scattering functibé] and
The crossover takes place on time scales of the order  comparison with experimental data taken in the dry network

ro=5% wy=(sa)2/(3D), (44) fs;?rtﬁélﬁl\ogs;arﬂled comparison will be studied in a future, less

where sa measures the distance of the monomer from the FOr the physically more realistic scenario of a swollen
cross-link (Fig. 3. Interestingly a monomer begins to feel network in a theta solvent further generalizations are re-

the presence of the cross-link only after a timespan of th@luired, such as taking hydrodynamic interaction into ac-
order . count. A generalized version of the equation of mot{@n

The two limiting casesA=1/2 relevant for the slower Would read
dynamics of the cross-link and=1 for the “free” chain
segments far away from the cross-link are expected on physi- dR;(t)
cal groundgdashed lines in Fig.)3An “inner” chain seg- T
ment has only two neighbors, whereas the cross-link is sur-
rounded by four neighbors. Thus, in general, for a monomer
with functionality f a prefactorA(f) =2/f is expected, s \yhere@®, is the Oseen tensor. Although the above equation

FIG. 3. Crossover of the mean squared displacement from the
dynamics of a “free” Rouseian monomeéupper dashed lingo the
(43) slower dynamics of a cross-linkower dashed ling

2 (- Ve Mo({RD +F(1). (49

was pointed out previousis]. becomes analytically untractable, for most experimental situ-
ations a preaveraged treatment is well justifi@d. This
VI. CONCLUSION computation is left for future work.

Within the framework of the Rouse model we have
proofed that an exact solution for the Langevin dynamics of ACKNOWLEDGMENT
a polymer subject thard 6 constraints exists when excluded
volume and hydrodynamic forces are neglected. The funda- M.P.S. wishes to acknowledge financial support from the
mental and general result for the resolvent, E2p), was Deutsche Forschungsgemeinschaft, Sonderforschungsbereich
derived for an arbitrary cross-link configuration making our262.



55 LANGEVIN DYNAMICS OF A POLYMER WITH ... 3043

[1] S. F. Edwards, J. Phys. A 318(1974. [9] P. Lancaster and M. TismenetsKiheory of MatricesAca-
[2] S. F. Edwards, ifPolymer Networksedited by A. J. Chompff demic Press, San Diego, 1985
and S. NewmartPlenum Press, New York, 19¥R. T. Deam  [10] T. O. Lewis and T. G. Newman, SIAM J. Appl. Math6, 701
and S. F. Edwards, Proc. Trans. R. Soc. Londo@88, 317 (1968.
(1976; R. C. Ball and S. F. Edwards, Macromolecule3 748 [11] B. H. Zimm and R. W. Kilb, J. Polym. ScB7, 19 (1959.
(1980. [12] B. E. Eichinger and J. E. Martin, J. Chem. Phg8, 4595
[3] P. E. Rouse, J. Chem. Phy&l, 1272(1953. (1978.
[4] M. Doi and S. F. EdwardsThe Theory of Polymer Dynamics [13] m. Schulz, P. Reineker, and M. Mer, J. Chem. Phys103
(Clarendon Press, Oxford, 1986Chap. 4. 10 701(1995.

[5] M. Warner, J. Phys. @4, 4985(1981).

[6] M. P. Solf and T. A. Vilgis, J. Phys. &8, 6655(1995.

[7] M. P. Solf and T. A. Vilgis, J. PhygFrance | 6, 1451(1996.

[8] H. Risken, The Fokker-Planck Equatior{Springer-Verlag,
Berlin, 1989, Chap. 3.

[14] P. J. DavisCirculant Matrices(Wiley, New York, 1979.

[15] T. A. Vilgis and F. Boue J. Polymer Sci. Pt. B26, 2291
(1988.

[16] P. G. de Gennes, Physi8s 37 (1967.



