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Langevin dynamics of a polymer with internal distance constraints

Michael P. Solf and Thomas A. Vilgis*
Max-Planck-Institut fu¨r Polymerforschung, Postfach 3148, 55021 Mainz, Germany

~Received 5 September 1996!

We present a rigorous approach to the Langevin dynamics of ideal polymer chains subject to internal
distance constraints. The permanent constraints are modeled by harmonic potentials in the limit when the
strength of the potential approaches infinity~hard cross-links!. The cross-links are assumed to exist between
arbitrary pairs of monomers. Formally exact expressions for the resolvent and spectral density matrix of the
system are derived. To illustrate the method we study the diffusional behavior of monomers in the vicinity of
a single cross-link within the framework of the Rouse model. The same problem has been studied previously
by Warner@J. Phys. C14, 4985~1981!# on the basis of Lagrangian multipliers. Here we derive the full, hence
exact, solution to the problem.@S1063-651X~97!09702-X#

PACS number~s!: 36.20.2r, 61.41.1e, 64.60.Cn, 87.15.By
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I. INTRODUCTION

A theoretical treatment of the dynamics of polymer n
works is a generally unsolved problem. In a preliminary
tempt Edwardset al. @1,2# studied the problem of a polyme
subject to internal distance constraints. In their investigat
the underlying theoretical problem was to handle
quenched degrees of freedom~hard cross-link constraints!
which, for example, in a random network exist between pa
of arbitrary polymer segments~the monomers!. As a first
step Edwards considered a~macroscopically! long polymer
chain which was internally cross-linked to itself at rando
The polymer backbone was assumed to be Gaussian an
resulting dynamics was found to be of the standard Rous
type @3,4#. Permanent junction points were treated by L
grangian multipliers, which led to enormous technical dif
culties for the corresponding differential equations. In fa
these could only be handled by strong approximations, s
as preaveraging in combination with harmonic variatio
Even when the problem was highly oversimplified and o
one cross-link was considered the method of Lagrang
multipliers still becomes highly involved, as was pointed o
in a successive paper by Warner@5#.

The purpose of the present paper is to develop an alte
tive formalism for treating Langevin dynamics of polyme
subject to internal distance constraints. For calculational s
plicity the simplest working model for a free polymer, th
Rouse model@3,4#, is considered. It is suggested that t
more complicated problem of a random network can also
treatedexactlyby the presented method. We adopt here
minimal model suggested by Edwards@1,2# and consider one
~macroscopically! huge polymer chain which is randoml
cross-linked to itself. Such a cross-linking process will le
to tetrafunctional cross-links. In previous works we have
ready demonstrated that the analogous static problem ca
solved exactly when excluded volume effects between
polymer segments are ignored@6,7#. Physical quantities such
as the static structure factor or the radius of gyration w
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found to be self-averaging and could be determined by r
tively simple numerical means. The essential trick was
account for the cross-links in a general connectivity mat
that includes both the connectedness of the polymer ch
and an additional contribution from the cross-linking. I
close analogy we expect the corresponding dynamic prob
to have a similar exact solution as long as complicating f
tors such as excluded volume, hydrodynamic forces, or
tanglements are neglected. To demonstrate this analogy
start from the standard Langevin description for the polym
segments and solve the stochastic differential equation
terms of its resolvent. As an instructive example we rec
sider the figure-eight-shaped polymer problem~i.e., a poly-
mer ring with one cross-link! studied by Warner@5# and
present its full solution. We first confirm the results fro
Warner, which have been derived only for low frequenc
and low Rouse mode index, but show secondly the ex
solution in the entire frequency and mode domain. Mo
over, the technique introduced here opens new ways to s
Langevin dynamics of constrained systems.

The paper is organized as follows. In Sec. II the physi
model, a generalized version of the Rouse model with in
nal distance constraints, is introduced. Section III summ
rizes some of the basic theorems regarding Langevin dyn
ics to be used later on. In Sec. IV, the main calculatio
body of the paper, the general mathematical formalism
handling internal distance constraints is developed in de
Our treatment is a generalization of a method previously
veloped for computing statistical properties of random
cross-linked Gaussian structures, i.e., ideal polymer n
works @6,7#. In Sec. V an application of the method to di
fusional motion of a single cross-link is given~the Warner
problem!. Section VI contains a short discussion of ma
results and outlook.

II. ROUSE MODEL WITH INTERNAL
DISTANCE CONSTRAINTS

As a minimal model for the dynamics of a Gaussian ch
subject to internal distance constraints we consider a ge
alized version of the classical Rouse model@3#. Its discrete
version is a bead-spring model, where the motion of
3037 © 1997 The American Physical Society
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FIG. 1. Examples of different cross-linking
topologies.~a! The polymer shape discussed
Sec. V.a is the persistence length of the polym
backbone. The hard cross-link constraint is e
forced by «→0. ~b! A ladder-shaped polyme
with «Þ0. ~c! Two-dimensional membrane.~d!
Random network.
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beads~monomers! is governed by the coupled set of Lang
vin equations

z
dRi~ t !

dt
52¹Ri

H0~$Ri%!1Fi~ t !. ~1!

In this equation of motion the inertial term is omitted
usual.z denotes the inverse mobility or friction constant, a
Ri(t) ( i50, . . . ,N) are the trajectories of the monomers
three-dimensional space. The stochastic forcesFi(t) are as-
sumed to bed correlated with first and second momen
given by @4#

^Fi
a~ t !&50, ~2!

^Fi
a~ t !F j

b~ t8!&52zkBTd i jdabd~ t2t8!.

Superscriptsa,b5x,y,z represent the three-dimension
Cartesian coordinates. In the classical Rouse model exclu
volume interaction and hydrodynamic forces are disregar
and only elastic forces between monomers are retained in
Hamiltonian. Here we consider a more general form of
Rouse model with an extra potential to allow for modeli
the internal distance constraints

bH05
3

2a2(i51

N

~Ri2Ri21!
21

3

2«2(e51

M

~Ri e
2Rj e

!2. ~3!

The first term in the Hamiltonian represents the connectiv
of a Gaussian chain with persistence lengtha, whereas the
second term models the cross-links. In particular we are c
cerned with permanent constraints when a monomer,
i 1, is linked to another monomer labeled byj 1. For more
than one cross-link a whole setC of cross-link ‘‘coordi-
nates’’ is needed to specify all junctions in the system

C5~ i 1 , j 1!, . . . ,~ i e , j e!, . . . ,~ i M , j M !. ~4!

For example, depending onC the object under investigatio
can be a flexible ring polymer, a two-dimensional me
brane, or a rubber network~Fig. 1!.

Although the theory will be developed for arbitrary co
pling constant« two scenarios are of special relevance. F
ed
d
he
e

y

n-
ay

-

r

«→0 it has been shown@6# that the Hamiltonian~3! is suit-
able to model hardd constraints~the classical cross-links! of
the form

)
e51

M

d„Ri e
~ t !2Rj e

~ t !…. ~5!

The case«→` leads to the well-known problem of a fre
chain, which serves here as a reference state. One migh
worried that the above model is ill defined and might diver
in the limit «→0. It will be shown in Sec. IV that the con
verse is true and that a surprisingly simple solution can
obtained for this special limit. As shown in the earlier pap
on the static properties@6#, it is important to take the limit
«→0 at the very end of the calculation. This procedure e
sures firstly that no mathematical problems occur and s
ondly that in this case hard cross-link constraints is trea
properly. Before going into more of the calculational deta
some of the basic definitions and notations regarding Lan
vin dynamics are summarized in the next section.

III. LANGEVIN DYNAMICS OF IDEAL POLYMERS:
PRELIMINARIES

Consider the generalized Ornstein-Uhlenbeck proc
specified by Eqs.~1!–~3!. For calculational simplicity matrix
notation will be used. We define (N11)-dimensional ‘‘su-
pervectors’’ with three-dimensional vector components
account for the positions of all monomersR(t)
5„R0(t), . . . ,RN(t)…

† and for the stochastic forces actin
upon themF(t)5„F0(t), . . . ,FN(t)…

†. The dagger denote
the complex conjugate of the transposed vector. Furth
more, the (N11)-dimensional connectivity~Kirchhoff! ma-
trix is introduced as

M~z!5v0SW01
1

z(e51

M

X~ i e , j e!D , ~6!

where
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W05S 1 21 0 ••• 0

21 2 21 A

0 � � � 0

A 21 2 21

0 ••• 0 21 1

D ~7!

is the Wiener matrix associated with the polymer ‘‘bac
bone,’’ and

X~ i e , j e!

5S 0 0 ••• 0 ••• 0 0

A A 0 A A

0 1 A 21 0

0 0 ••• 0 ••• 0 0

0 21 A 1 0

A A 0 A A

0 0 ••• 0 ••• 0 0

D A

← i eth row

A

← j eth row

A

~8!

models a single cross-link. For further use we note tha
characteristic time scale is given by the inverse of the ‘‘f
quency’’

v05
3kBT

a2z
. ~9!

The dimensionless parameterz5(«/a)2 in Eq. ~6! is used to
enforce the cross-linking constraints. With the above defi
tions the system of stochastic differential equations~1! cast
into matrix form reads

dR~ t !

dt
1M~z!R~ t !5

1

z
F~ t !. ~10!

Some of the physical quantities of interest and their inte
lations are listed below. More details can be found, for
ample, in Ref.@8#. The Green’s function to Eq.~10! is given
by

G~ t !5 lim
z→0

e2M~z!t. ~11!

For z→0 the case of hardd constraints is recovered. Othe
wise z is an additional distance parameter in the model.
great importance in the following derivation is the Lapla
transform~resolvent! of the matrixM

R~v![E
0

`

dt e2 ivtG~ t !5 lim
z→0

@ ivI1M~z!#21, ~12!

whereI denotes the identity matrix.
From Eq.~2! the spectral matrix of the Langevin force

F(t) is found to be

^F̃~v!F̃†~v8!&512pkBTzd~v2v8!I, ~13!

where
a
-

i-

-
-

f

F̃~v!5E
2`

`

dt e2 ivtF~ t ! ~14!

is the Fourier transform of the stochastic forces. ByFiFj we
mean the usual three-dimensional scalar vector prod
whereasFF† is used for outer vector products. Fourier tran
forms are denoted by a tilde.

A formal solution to Eq.~10! can be obtained by Rice’s
method @8#. The spectral density matrix for the stochas
variableR(t) can be derived by use of Eq.~13! and Fourier
transformation of Eq.~10!,

^R̃~v!R̃†~v8!&512pDd~v2v8!R~v!R†~v8!, ~15!

with the diffusion coefficientD given by

D5kBT/z. ~16!

Of primary interest for the diffusional behavior is the tw
time correlation function matrix defined as

C~ t,t8!5^@R~ t !2R~ t8!#@R~ t !2R~ t8!#†&. ~17!

Finally, a steady-state solution forC(t,t8) in terms of the
resolvent~12! is easily derived from the expression for th
spectral density matrix in Eq.~15!,

C~ t2t8!5
12D

p E
0

`

dv@12cosv~ t2t8!#R~v!R~v!†.

~18!

In the following study our primary goal will be to find a
general approach to calculate the resolventR(v), Eq. ~12!,
for an arbitrary set of cross-linking constraintsC, Eq. ~4!.
From there Green’s function and correlation functions can
principle be obtained by use of the standard formulas p
sented in this section. AlthoughM(z) is a matrix which
highly depends on all the details ofC ~the cross-link posi-
tions!, substantial progress can be made by invoking the
lowing exact method.

IV. CALCULATION OF THE RESOLVENT R„v…

The first step in deriving a general expression forR(v)
for hard cross-links is to find a way to perform the lim
z→0 in Eq. ~12!. This is an interesting problem in its ow
right which so far could only been handled by introducing
finite cutoff at z51 and successive crude variational es
mates. Here we present an analytically exact approach
can overcome these difficulties. The mathematical trick is
utilize an additional symmetry of the cross-link term in E
~8! by writing the complete cross-link contribution in Eq.~6!
in the form of a dyadic~outer vector! product

(
e51

M

X~ i e , j e!5UU†, ~19!

where

U~C![~u1 , . . . ,uM ! ~20!

has been introduced as the (N11)3M rectangular matrix
with each of itsM column vectors given by
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ue5ei e2ej e ~e51, . . . ,M !. ~21!

Hereei e represents the (N11)-dimensional unit vector with

1 in the i eth position, and 0 otherwise. ThusU(C) has only
2M elements not equal to zero that contain complete in
mation about all cross-link positions. In the above notat
each cross-link is uniquely represented by a vectorue . Note
that all vectorsue , e51, . . . ,M are linearly independent fo
tetrafunctional cross-links. Combining Eqs.~6!, ~12!, and
~19!, the resolvent cast in matrix form reads

R~v!5
1

v0
lim
z→0

S i v

v0
I1W01

1

z
UU†D 21

. ~22!

It is convenient to decompose Eq.~22! into a singular and a
nonsingular part, with the nonsingular part being

W5 i
v

v0
I1W0 . ~23!

It is well known in the mathematical literature that if th
inverse ofW exists, then the inverse in Eq.~22! is given by

SW1
1

z
UU†D 21

5W21@I2U~zI1U†W21U!21U†W21#.

~24!

This theorem can be directly verified by matrix multiplic
tion. The latter identity is also known as the Sherma
Morrison formula@9#.

A. The limit z˜0

There are two subtle points about the existence of
right hand side of Eq.~24!. First, we requireW21 to exist.
The only critical case arises ifv50, i.e., whenW5W0 in
Eq. ~23!. The problem here is thatW0 is only positive
semidefiniteand there is one mode with eigenvalue 0 fro
translational invariance. This can be directly seen from
definition ofW0 in Eq. ~7!, which is a row~column! constant
matrix. However, even in the semidefinite case the ab
theorem remains valid ifW21 denotes a generalized invers
of W as was proved in Ref.@10#.

Secondly, from the definition ofue in Eq. ~21! it is easily
verified that for tetrafunctional cross-links allM vectorsue
are linearly independent. Thus in general the ker
zI1U†W21U will be a positivedefinite matrix of dimension
M and full rank which has only positive eigenvalues for a
non-negative values ofz. As a consequence performing th
z→0 limit in Eq. ~24! leads to a well-defined expression f
the resolvent

R~v!5
1

v0
W21@I2U~U†W21U!21U†W21#. ~25!

The first term is the linear chain~Rouse! model, whereas the
second part arises entirely from the effect of cross-linki
Although the case of general cross-linking potentialz is still
implicit in the basic formula~24!, we will restrict ourselves
in the following discussion to the somewhat simpler ca
z50, i.e., hardd constraints. Equations~24! and ~25! are
r-
n

-

e

e

e

l

.

e

formally exact solutions to the problem posed in Eqs.~1!–
~4!. The further evaluation ofR(v) for specific realizations
of cross-linksC can be split into two parts and is discuss
in subsequent sections.

B. Resolvent ofW0

Evaluation of the inverse ofW in Eq. ~25! can in principle
be done by full diagonalization ofW0, which is tridiagonal.
For calculational simplicity we consider here only the cyc
counterpart ofW0 with periodic boundary conditions

W05S 2 21 0 ••• 21

21 2 21 ••• 0

A � � � A

0 ••• 21 2 21

21 ••• 0 21 2

D . ~26!

Both models~7! and~26! are known to obey the same Rou
dynamics in the limitN→` @11#. Physically the latter situ-
ation represents a flexible ring polymer. The eigensystem
Eq. ~26! is of particular simple form since it is a circulan
The eigenvalues read

lk54sin2
pk

N11
, k50, . . . ,N. ~27!

The modal matrix of Eq.~26! is the Fourier matrixF @14#
with matrix elements

@F#kl5
1

AN11
exp

2p ikl

N11
, k,l50, . . . ,N. ~28!

Spectral decomposition leads to the well-known represe
tion of the inverseW21 in terms of its eigenvalues

@W21#kl5
1

N11(n50

N expS 2p in~k2 l !

N11 D
iv/v01ln

. ~29!

C. Discussion of kernel

The remaining calculational task for determiningR(v) is
the evaluation of the kernel function in the second part of E
~25!,

K~v;C![~U†W21U!21. ~30!

Since K(v;C) depends on all the cross-link position
C5( i 1 , j 1), . . . ,(i M , j M) via U no further analytical
progress is possible without specifying the cross-link in
system. On the other hand, from the mathematical struc
of K(v;C) most problems of interest fall into one of th
following three categories. Only one of these will be cons
ered in detail in Sec. V.

~i! The number of cross-linksM is small. Since
K(v;C) requires inversion of anM3M matrix, analytical
progress is always possible ifM is not too large. A particu-
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larly simple problem is treated in the next section when
consider the dynamics of a polymer shaped like the figure
eight @Fig. 1~a!#.

~ii ! Another special case arises whenM is large, but there
is some additional pattern in the structure ofU. Examples of
this kind are illustrated in Figs. 1~b! and 1~c!. In particular,
the sketch in Fig. 1~b! shows an example of a macromolecu
with distance constraintszÞ0, i.e., the more general cas
governed by Eq.~24!. For the above examplesK can be
calculated as a consequence of the regularity of the cr
link positions. We will report on these systems in a separ
publication.

~iii ! The third important category arises whenM is large
and the cross-link positionsC in Eq. ~4! are picked at ran-
dom. This is the case of a polymer gel@Fig. 1~d!#. Here one
has to resort to numerical computation ofK(v;C) @7#. How-
ever, there is still a huge calculational advantage with
~25!. For a polymer network we have in generalM!N.
Equation~25! requires ‘‘only’’ the inverse of anM3M ma-
trix, @7# and not of the completeN3N connectivity matrix as
is commonly believed in the polymer literature@12,13#.

An analytic approach to the network problem would be
perform the quenched average of the resolvent over
cross-link positionsC. The latter problem is a key problem
in current network research and has not been analytic
solved even for the static problem.

Before calculatingR(v) for a specific example, we wan
to establish some remarkable and general properties of
operators in Eq.~25!. Consider the cross-link part in Eq
~25!,

V[W21U~U†W21U!21U†W21. ~31!

By elementary matrix multiplication it is found that

VWV5V, U†V5U†W21, VU5W21U. ~32!

A matrix with these properties is said to be a generaliz
projector toW21. Furthermore,

~WV!25WV, ~VW!25VW ~33!

are idempotents whose eigenvalues are known exa
l151 andl250 with degeneraciesM andN2M . By use of
the above results it is easy to prove that the resolvent sati
a remarkable orthogonality relation

U†R~v!5R~v!U50. ~34!

Equation~34! is valid for arbitrary cross-link positionsC and
independent of the specific cross-link topology of the syst
under investigation.

V. DIFFUSIONAL MOTION OF A SINGLE CROSS-LINK

As the simplest possible application of the method dev
oped in Sec. IV we consider the figure-eight-shaped polym
depicted in Fig. 1~a!. What we have in mind is to model th
dynamics of a single cross-link in an ideal dilute netwo
when the distance between cross-links is large@5#. It is ex-
pected that monomers in the neighborhood of the cross-
are somewhat affected by the slower dynamics of the cr
link @1,5,15#.
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A suitable realization of the system in Fig. 1~a! would be

U~C!5u15e02e~N11!/2 . ~35!

That is, monomer 0 is linked to monomer (N11)/2. The
main calculational task is to determine the kernel functio
Eq. ~30!, of the system. From Eq.~35! and withW21 given
by Eq. ~29! we get immediately

K~v!5S 4

N11 (
n odd

1

iv/v01ln
D 21

, ~36!

where the summation includes only the odd terms. For
diffusional motion the quantity of interest is the se
correlation function contained in the diagonal elements
the correlation matrix~18!

@C~ t2t8!#ss5^@Rs~ t !2Rs~ t8!#2&, ~37!

wheres is the distance of thesth monomer with respect to
the cross-link at positions50. Typical terms and manipula
tions in the straightforward derivation which is not carrie
out in detail are of the form

1

N11 (
nodd

expS 2p isn

N11 D
iv/v01ln

.
1

2E0
1

dx
exp~2p isx!

iv/v014sin2~px!

.
1

4
Av0

v
expS 2

ip

4
2~11 i !usuA v

2v0
D . ~38!

In deriving the first integral we have performed theN→`
limit. The latter expression was obtained by setti
sin(px).px. Only the final result for the self-correlatio
function ~37! is quoted here

^@Rs~ t !2Rs~ t8!#2&5A~s,ut2t8u! 2a2Av0ut2t8u
p

. ~39!

The time-dependent prefactor is given by

A~s,ut2t8u!512
1

2A2p
E
0

`

dx
12cosx

x3/2
~40!

3e2s8Ax@cos~s8Ax!1sin~s8Ax!#

512
1

4pE0
`

dycosS ys822 2
p

4 D ln~11y2!

y3/2
, ~41!

which scales with

s8[A 2s2

v0ut2t8u
. ~42!

The complicated integral in Eq.~41! is plotted in Fig. 2. The
asymptotic behavior for small values ofs8 is governed by the
expansion
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A~s8!5
1

2
1
s8Ap

2A2
2
s82

4
1O~s83!. ~43!

In particular for the diffusional motion of the cross-lin
(s50), we findA51/2 which is exactly half the diffusion
constant of an unconstrained monomer in the Rouse m
@16#. The finding is in agreement with the result in Ref.@5#
based on the method of Lagrangian multipliers. Fors→`
~monomers that are sufficiently far from the cross-link! we
recover the diffusion law of the classical Rouse mo
(A51) which was first derived by de Gennes@16#.

In addition, we obtain the crossover from the slower d
namics of the cross-link to that of a ‘‘free’’ monomer in th
classical Rouse model ass is varied from zero to infinity.
The crossover takes place on time scales of the order

ts5s2/v05~sa!2/~3D !, ~44!

wheresa measures the distance of the monomer from
cross-link ~Fig. 3!. Interestingly a monomer begins to fe
the presence of the cross-link only after a timespan of
orderts .

The two limiting casesA51/2 relevant for the slowe
dynamics of the cross-link andA51 for the ‘‘free’’ chain
segments far away from the cross-link are expected on ph
cal grounds~dashed lines in Fig. 3!. An ‘‘inner’’ chain seg-
ment has only two neighbors, whereas the cross-link is
rounded by four neighbors. Thus, in general, for a monom
with functionality f a prefactorA( f )52/ f is expected, as
was pointed out previously@5#.

VI. CONCLUSION

Within the framework of the Rouse model we ha
proofed that an exact solution for the Langevin dynamics
a polymer subject tohardd constraints exists when exclude
volume and hydrodynamic forces are neglected. The fun
mental and general result for the resolvent, Eq.~25!, was
derived for an arbitrary cross-link configuration making o

FIG. 2. PrefactorA(s8), Eq.~41!. The dashed lines represent th
asymptotic behavior for small and large values ofs8.
el
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results also applicable to the challenging problem of a r
dom network.

In this investigation we restricted ourselves to the si
plest physical scenario, where only Rouseian dynamics
involved. This case was deliberately chosen to highlight
principal mathematical difficulties. As a special applicati
we studied the dynamics of the figure-eight-shaped polym
depicted in Fig. 1~a!. In contrast to an earlier attempt b
Warner @5# based on Lagrangian multipliers which yielde
only two limiting casess→0 and`, the full solution could
be derived by our method. Moreover, our result allows
computation of the dynamic scattering function@16# and
comparison with experimental data taken in the dry netw
state. A detailed comparison will be studied in a future, le
formal paper.

For the physically more realistic scenario of a swoll
network in a theta solvent further generalizations are
quired, such as taking hydrodynamic interaction into a
count. A generalized version of the equation of motion~1!
would read

z
dRi~ t !

dt
5(

j
Qi j „2¹Rj

H0~$Rj%!1Fj~ t !…, ~45!

whereQi j is the Oseen tensor. Although the above equat
becomes analytically untractable, for most experimental s
ations a preaveraged treatment is well justified@4#. This
computation is left for future work.
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FIG. 3. Crossover of the mean squared displacement from
dynamics of a ‘‘free’’ Rouseian monomer~upper dashed line! to the
slower dynamics of a cross-link~lower dashed line!.
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